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Multiple-trapping transient currents in thin dielectric 
layers with enhanced trap density in the near-contact 
regions 
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Technical University of Gdansk, Faculty of Technical Physics and Applied Mathematics, 
Majakowskiego 11/12,8@952 Gdansk, Poland 
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Abstract. We present several illustrative multiple-trapping current-time characteristics in 
thin dielectric layers with enhanced trap concentration in the near-contact regions. Such a 
spatial trap distribution. for different energy trap distributions, leads to a variety of different 
noq-typical shapes of the characteristics. The results have been obtained with the aid of a 
Monte Carlo simulation for conditions corresponding to the typical time-of-flight method. 

1. Introduction 

Even very carefully prepared thin dielectric layers can be hardly believed to have an 
ideally homogeneous space trap distribution, at least in the near-contact regions. The 
enhanced trap density in the near-contact regions may originate, for example, from 
diffusion of atoms from contacts or ambient atmosphere, chemical reactions or lattice 
constant mismatching, and may extend for some distance into the layer. 

In this paper we present some illustrative Monte Carlo results showing that the 
presence of the enhanced density of trapping centres strongly localised in the near- 
contact regions can lead to a variety of different non-typical shapes of the current-time 
characteristics and can completely cover the effects due to bulk traps. The spatial non- 
homogeneity of the trap distribution may be in general one of the factors leading to 
distinct discrepancies between the experimental results (see, e.g., Pfister and Scher 
1978, Muller-Horsche et a1 1987, Di Marco et a1 1989) and theoretical predictions (see, 
e.g., Scher and Montrolll975). Thus a study of pure effects arising from anx-dependent 
trap distribution could help the experimentalist to interpret data. 

After description of the assumed model spatial and energy trap distribution (section 
2) and of the simulation algorithm (section 3), we present and discuss the numerical 
results (section 4), concluding the paper with some final remarks (section 5). 

2. Model trap distribution 

The energy and spatial trap distribution is here assumed to be as follows: 

where x is the spatial coordinate (0 s x s L ,  where L is the layer thickness) and % is the 
Nt(x ,  z) = N o ~ o ( % )  + Nlsl(x>fi(z) + NrSr(x)fr(z) (1) 
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trap depth measured down from the bottom of the conduction band. The trap distribution 
(1) is written as a sum of three fractions of traps: Nofo(%) represents an x-independent 
bulk trap distribution, and (NJ,(x)f i(%) and N,Sr(x)f,(%) describe the near-surface 
enhanced trap density. The subscripts 1 and r refer to the left and right surfaces of the 
layer, so that the second and the third terms in (1) correspond to the traps localised near 
x = 0 and x = L ,  respectively. The functions f o ,  f i  and f, describing the energy trap 
distributions of corresponding trap fractions are normalised to unity ( fTf , (%)  d'& = 1, 
i = 0,1, r). Thus the total trap density is given by N:"'(x) = No + N , S , ( x )  + N , S , ( x ) .  
S , (x )  and S,(x) are dimensionless shape functions of the near-contact spatial distributions 
of traps, normalised to unity in the sense SI(0) = 1 and S,(L) = 1. Because of the assumed 
strong localisation of additional traps near the layer surfaces, the total trap densities 
in x = 0 and x = L are Nyt  (0) = N o  + N I  and Nyt  ( L )  = No + N,. We shall assume the 
f-functions to be exponential in energy: 

fi(S> - exP[-(% - ~ e , ) / k T , l  ( 2 )  
where 8, are the cut-off energies of trap distribution components, i = 0,1, r (no traps in 
the interval (0, %,)) and T, are the characteristic temperatures. The spatial shape func- 
tions SI and S, are assumed to be 

where D, and D, are parameters ( D l ,  Dr << L) .  The energy and spatial distributions (2)- 
(4) cover a wide class of materials of which the layer and contacts are made and should 
be sufficiently representative to illustrate the specific features of transient currents in 
the dielectric layers with enhanced trap concentrations in the near-contact regions. 

3. Simulation algorithm 

Transient currents have been calculated with the aid of Monte Carlo simulation. The 
simulation has been performed according to an algorithm which is the generalisation of 
that proposed by Silver et a1 (1971) and used previously by Rybicki and Chybicki (1988, 
1989). The algorithm does not take into account space-charge effects and diffusion. A 
single trapping-detrapping event is described by random values of the trapping time 
z (x )  (lifetime in the conduction band), the depth % of the trap and the detrapping time 
zd(%) (dwell time in the trap). The random values '~(x), % and zd(%) are generated 
according to their distribution functions F ,  which have a uniform distribution in the 
interval (0, 1) (see, e.g. ,  Dwass 1970). The distribution functions are 
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The random values of z (x ) ,  8 and z d ( 8 )  are obtained by solving the equations FTcx, = X, 
F% = Y and F,, = Z, where X, Y and Z are random numbers from the interval (0 , l ) .  In 
equations (5)-(7), f(x) is the mean trapping time in x: 

[f(x)]-' = C [ N ,  + N,S,(x) + N,S , (x ) ]  (8) 
where C is the capture coefficient given by 0 0 t h  (U is the trapping cross section and 0 t h  

the thermal velocity) and fd(%) is the mean detrapping time from the trap of depth 8: 

[ fd (%)] - '  = V eXp( - 8 / k T )  (9) 
where v is the frequency factor, k the Boltzmann constant and T the temperature. The 
ith distance Axt travelled by the carrier between two successive trappings is Ax, = p E t , ( x )  
( p  is the microscopic mobility and E the external electric field), and the elementary 
contribution Aj,(t) to the current in the external circuit flowing during time z t (x )  is 
Aj,(t) = qyE/L  (q is the elementary charge and t = E, (z, + t d t ) ,  z, and t d t  being ith 
random trapping and detrapping times, respectively). Each carrier starts its random 
motion at x = 0 at t = 0, which corresponds to the generation of a very thin (compared 
with the layer thickness) wall of carriers at one of the contacts by a pulse of duration 
short in comparison with the time scale of the transient. The trapping-detrapping events 
are repeated until the carrier reachesx = L ,  where x = C, Axt. The results were obtained 
by averaging random motions of 5 X 103-104 individual carriers. 

4. Numerical results and discussion 

Figure 1 presents the results for NI = N I  = 103N0 with DI = D, in the range 0.001L- 
0.02~5 (other parameters are specified in the caption). The sharpness of the current peak 
increases as the parameter D,,,/L decreases. For Dl,,/L = 0.001 the relative increase in 
the current for a, = 0.75, i = 0,1, r (ai = T/T j ,  where Tis the layer temperature) is over 
two orders of magnitude. The more dispersive the transport (smaller ai), the smaller is 
the relative current increase (e.g. for ai = 0.25 and Dl,,/L = 0.001, it is less than one 
order of magnitude (cf Rybicki and Chybicki 1988, 1989)). The shape of the current 
transients A-C and E in figure 1 are determined entirely by the trap distribution near 
the injecting contact. If the enhanced trap density occurs only in the vicinity of x = 0 
(NI = O), the current shape is almost identical (shifted towards shorter times by a few 
line thicknesses in the scale applied in the figure) with that for NI = NI. On the other 
hand, if N,  = 0 and N, = 103No, the current shape hardly differs from the case NI  = N, = 
0 (curve D in figure 1). Thus, curves C (corresponding approximately to the case N, = 
0, NI = 103No) and D (corresponding to N,  = 103No, NI = 0) show a polarity dependence 
of transient currents in a layer with enhanced trap density near only one contact. 

Because of the dominating role of the trap distribution in the vicinity of x = 0, 
we have performed further calculations for N,  = 0, shortening the computer time by 
eliminating many near-right-hand-side-contact trapping events, which hardly affects the 
shapes of transients. All the curves in figures 2 and 3 were calculated for D,/L  = 0.005. 

Figure 2 corresponds to a very narrow energy distribution of bulk traps (ao = 2.0), 
leading to non-dispersive transport (curve A). The near-contact energy trap distribution 
is characterised by al = 0.75. As easily seen, even a relatively high density NI of suf- 
ficiently shallow traps does not perturb the non-dispersive bulk transport (curve B). On 
the other hand, a much lower density NI of sufficiently deep traps can lead to a very 
complicated transient (curve E). The first slow current decay is due to the absorption of 
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Figure 1. Transient currents for the trap distribution (1)-(4) as a function of the width of the 
near-contact enhanced trap density (a; = 0.75; Y exp(-%,/kT) = 5 X 10‘ s-’; i = 0,1, r; 
mth = 10-13cm3 s-’): curve A,  N o  = 1019 ~ m - ~ ,  NI = N ,  = lo2’ ~ m - ~ ,  D,/L = D,/L = 
0,001; curve B,  No = l O I 9  ~ m - ~ ,  N ,  = N ,  = 10’’ c w 3 ,  D,/L = D,/L = 0.002; curve C, No = 
l O l 9  cn r3 ,  NI = N ,  = lo2* ~ m - ~ ,  D, /L  = D,/L = 0.005; curve D, NI = 0, No = lOI9 

N ,  = loz2 ~ m - ~ ,  D,/L = 0.005; curve E, N o  = 10” ~ m - ~ ,  NI = N ,  = c ~ r - ~ ,  D,/L  = D,/ 
L = 0.02. The average numbers of trapping-detrapping events over the layer thickness for 
curvesA, €3, C, D and E are approximate1y3000,5000,11000,6000 and21 000, respectively. 
Curves C and D almost coincide with those calculated for N ,  = 0, Nfl  = ~ m - ~ ,  NI = lo2’ 
C I I - ~ ,  D, /L  = 0.005, and for NI = N ,  = 0, N o  = l O I 9  c ~ I - ~ ,  respectively. 

1 2 3 G 5 6 7 
log( f / t , )  

Figure 2. Transient currents for trap distribution (1)-(4) (Nr  = 0;  D, /L  = 0.005; eo = 2; 
v exp(-%,/kT) = 2.3 X 10’ s-l; cm3 SKI): curve A ,  NI = 0, N o  = loJ9 cm-’; 
curve B, NI = 5 x loz1 C I I - ~ ,  No = l O I 9  ~ m - ~ ,  a, = 0.75, SI = Z0 - 10 kT; curve C, NI = lo2’ 
~ m - ~ ,  No = l O I 9  a, = 0.75, = So; curve D, NI = 10” ~ m - ~ ,  No = 0, CY, = 0.75,%, = 
go; curve E, N1 =5 x lo1* c ~ I - ~ ,  & = al = 0.75, ‘E, = ‘Eo + 10 kT; curve F, NI = loz1 
CII-~, No = lOI9 a, = 0.333, ‘E, = SO - 10 kT.  

= 
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Figure 3. Transient currents for trap distribution (1)-(4) (Nr = 0, Dl/L = 0.005; a" = 0.75; 
a, = 2; vexp(-%,/kir) = 2.3 X 102s-1;au,h = 10-'3cm3s-'. , N - - l0l9 ~ m - ~ ) :  curve A, NI = 
0; curve B, NI = 1O2I ~ m - ~ ,  XI = 8,, - 2 kT; curve C ,  NI = 10" c w 3 ,  8, = 8,; curve D, NI = 
lo2' ~ m - ~ ,  %, = %, + 2 kT; curve E, NI = lo2' ~ m - ~ ,  8, = E o  + 5 kT. 

the carriers in deep traps nearx = 0. The carriers which avoided deep trapping contribute 
to non-dispersive bulk transport, with their effective time of flight (about 104t0, where 
to is the trap-free time of flight). For longer times, detrapping from the near-contact 
deep traps occurs, leading to a lower current of dispersive character, with the 'second' 
effective time of flight (about 2 X lo%,), and a t-('+") decay in the post-time-of-flight 
region. Curves C and D in figure 2 show the effect of covering the action of bulk traps 
by those strongly localised in the vicinity of x = 0. 

Figure 3 shows some examples of results obtained for the near-contact traps with 
q = 2.0, superimposed on the bulk traps characterised by azo = 0.75. The reference 
curve A corresponds to NI = 0. The subsequent transients B-E correspond to different 
cut-off energies (see caption). The portions of transients left of the current maximum 
correspond to the non-dispersive transport of an almost Gaussian carrier packet in the 
region of enhanced trap density (cf Rybicki and Chybicki 1989), perturbed with the 
carrier absorption in deep traps (slight current decrease seen in the flat portions). 
The packet, after reaching the N,(x )  = 0 region, becomes a Scher-Montroll dispersive 
packet, leading to dispersive current decay. The dispersive bulk transport is thus delayed 
by the time necessary to leave the enhanced-trap-density region. The shape of the final 
current in curve E is in fact very similar to the reference curve A, plotted with its time 
argument shifted towards longer times by the duration of carrier transport through the 
near-contact region. 

5. Concluding remarks 

Obviously, more complicated spatial and energy trap distributions may lead to cor- 
respondingly more complicated transients. Moreover, there is no one-to-one relation 
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between the trap distributions and current shapes; trap distributions, which are com- 
pletely different from the physical point of view, may lead to almost identical transients. 
The above results show pure effects due to the presence of traps strongly localised in the 
near-contact regions in two limiting cases: narrow-energy near-contact distributions 
superimposed onto a wide-energy bulk distribution; wide-energy near-contact dis- 
tributions superimposed onto a narrow-energy bulk distribution. Thus one can also gain 
some insight into the current shapes in intermediate or more complicated cases. 
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